Pentanuclear copper(II) complexes with the novel 6-(phenylethynyl)-2pyridonate ligand: synthesis, structures and magnetic properties

A llan A. D oyle, Simon Parsons, G regory A. Solan and R ichard E. P. W inpenny*
D epartment of Chemistry, The U niversity of E dinburgh, W est M ains R oad, E dinburgh, UK EH 93JJ

Abstract

Three pentanuclear copper(ı) complexes, $\left[\mathrm{Cu}_{5}(\mathrm{OM} \mathrm{e})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\text { pehp })_{6}(\mathrm{Cl})\right] \mathbf{1},\left[\mathrm{Cu}\left(\mathrm{OM} \mathrm{e}_{2}\right)_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\text { pehp })_{6}-\right.$ $\left.\left(\mathrm{NO}_{3}\right)\right] 2$ and $\left[\mathrm{Cu}_{5}(\mathrm{OH})\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{3}(\text { pehp })_{6}\right]$ 3, have been prepared via the solid-state reaction of hydrated copper(ו) nitrate with the sodium salt of the novel ligand, 6 -(phenylethynyl)-2-pyridone (H pehp) in the presence of sodium trifluoroacetate. Crystal structural analysis at 220 K of $\mathbf{1 - 3}$ reveals capped-butterfly arrangements of the five copper atoms with the two shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ vectors in $\mathbf{1}$ and $\mathbf{2}[3.024(6)-3.050(3) \AA$] occurring between the caps and the wingtips while in $\mathbf{3}$ the wingtip-cap distances are more asymmetric with one short [3.042(7) \AA] and one long $[3.638(7) \AA] \mathrm{Cu} \cdots \mathrm{C}$ u vector. M ass spectroscopic studies of $\mathbf{1 - 3}$ show fragmentation patterns consistent with the observed structures, while magnetic studies of the complexes indicate antiferromagnetic exchange coupling within the Cu_{5} cores and $\mathrm{S}=\frac{1}{2}$ ground states for all compounds. The trifluoroacetate adduct of H pehp, H pehp•0.5 $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ was synthesised in three steps from 2-bromo-6-benzyloxypyridine via 2-benzyloxy-6(phenylethynyl)pyridine and the single crystal X-ray structure of H pehp was also determined.

The controlled synthesis of polymetallic complexes with spe cific magnetic properties continues to provide a motivation for research. The nature of the ligand is crucial in governing the nuclearity and arrangement of the resulting species, ${ }^{1-4}$ while substituents on a given ligand may play a more subtle but as significant a role in the way the cluster assembles. ${ }^{5-9}$

The 2-pyridonate family of ligands has been widely employed in recent years in co-ordination chemistry due in part to the variety of bonding modes possible. ${ }^{5}$ In particular, a range of polynuclear complexes are accessible by shrewd choice of 6 -substituted-2-pyridonate. For example, the solid-state reactions of copper(II) nitrate with either 6 -chloro-2-pyridonate (chp), 6 -fluoro-2-pyridonate (fhp) or 6-methyl-2-pyridonate (mhp) gave respectively homoleptic dinuclear, ${ }^{6}$ tetranuclear ${ }^{7}$ or hexanuclear ${ }^{8}$ copper(II) species. In contrast, the combination of carboxylate and the 6-substituted-2-pyridonate [6-bromo-2pyridonate (bhp), chp or mhp] ligands gave exclusively octanuclear copper(II) complexes. ${ }^{9}$ To investigate the factors that contribute to the nature of the polynuclear assembly we have sought to extend the range of substituents located at the six position on the pyridonate ring. H ere we report the synthesis of the protonated phenylethynyl derivative, 6 -(phenylethynyl)-2pyridone (H pehp), and the reaction of the sodium salt of its anion with hydrated copper(II) nitrate.

Experimental

Hydrated copper(II) nitrate, 2,6-dibromopyridine, 1,4,7,10,13, 16-hexaoxacyclooctadecane (18-crown-6), bis(triphenylphosphine)palladium dichloride, copper(I) iodide, phenylacetylene, diethylamine, trifluoroacetic acid and lanthanum nitrate hexahydrate were obtained from Aldrich. Solvents were used as obtained from suppliers.

Hydrogen and ${ }^{13} \mathrm{C}$ N M R spectra were recorded in CDCl_{3} at room temperature on a Bruker AM-250 M Hz spectrometer. M ass spectra were obtained by fast-atom bombardment (FAB) of samples in a 3-nitrobenzyl alcohol matrix on a K ratos M S50 spectrometer. Infrared spectra were recorded on a Perkin-EImer Paragon 1000 FT-IR spectrometer as N ujol mulls (K Br or NaCl plates) or as K Br discs. The EPR measurements were made at Q-band (ca. 34.2 GHz) using a Bruker ESP 300 E spectrometer fitted with an ER 4118CF cryostat. A nalytical data

Scheme 1 Synthetic route for the formation of H pehp $\cdot 0.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ from 2,6-dibromopyridine
were obtained on a Perkin-Elmer 2400 elemental analyser by the U niversity of E dinburgh microanalytical service.

Preparation of compounds

6-(P henylethynyl)-2-pyridone (H pehp). The three-step synthesis of H pehp from 1 was based on that reported for dipyridonylacetylene $\left[\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right) \mathrm{CC}\left(\mathrm{ON} \mathrm{C}_{5} \mathrm{H}_{4}\right)\right]$ (see Scheme 1). ${ }^{10}$
(i) 2-Bromo-6-benzyloxypyridine. A mixture of 2,6dibromopyridine ($5.03 \mathrm{~g}, 21.2 \mathrm{mmol}$), benzyl alcohol (2.64 g , $24.4 \mathrm{mmol})$, potassium hydroxide ($2.60 \mathrm{~g}, 46.4 \mathrm{mmol}$) and 18 -crown- $6\left(0.24 \mathrm{~g}, 0.91 \mathrm{mmol}, 4 \mathrm{~mol} \%\right.$) in toluene ($70 \mathrm{~cm}^{3}$) was heated under reflux, with a Dean-Stark apparatus, for 1 h .

A fter this time TLC [silica, cyclohexane-ethyl acetate (2:1)] indicated complete consumption of starting material. The reaction mixture was cooled and quenched by the addition of ice/ water ($50 \mathrm{~cm}^{3}$). The layers were separated and the aqueous layer extracted into toluene ($2 \times 50 \mathrm{~cm}^{3}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness to give 2-bromo-6-benzyloxypyridine as an orange liquid ($5.59 \mathrm{~g}, 99.9 \%$). IR (K Br , thin film, cm^{-1}) 1587, 1554, 1496 and 1437. NMR: ${ }^{1} \mathrm{H}, \delta 7.54-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.08$ (dd, J нн $7.5, \mathrm{~J}_{\text {нн }}$ $0.6,1 \mathrm{H}$), 6.75 (dd, J ен 8.2 , J нн $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (s, 2 H , PhCH ${ }_{2}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 162.9(\mathrm{~s}, \mathrm{C}), 140.4(\mathrm{~s}, \mathrm{CH}), 138.3(\mathrm{~s}, \mathrm{C})$, 136.4 (s, C), 128.3 (s, 2CH, Ph), 128.2 (s, 2CH, Ph), 127.9 (s, $\mathrm{CH}, \mathrm{Ph}), 120.3(\mathrm{~s}, \mathrm{CH}), 109.6(\mathrm{~s}, \mathrm{CH})$ and $68.3(\mathrm{~s}, \mathrm{PhCH} 2)$.
(ii) 2-Benzyloxy-6-phenylethynylpyridine. Copper(I) iodide $(0.22 \mathrm{~g}, 1.16 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ was added to a mixture of 2 -bromo-6-benzyloxypyridine ($10.08 \mathrm{~g}, 38.18 \mathrm{mmol}$), $\left[\mathrm{PdCl}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right](0.18 \mathrm{~g}, 1.15 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and phenylacetylene (4.29 $\mathrm{g}, 42.1 \mathrm{mmol}, 1.1$ equivalents) in diethylamine ($120 \mathrm{~cm}^{3}$) under argon. The reaction mixture was allowed to stir at room temperature for 20 h after which time TLC [silica, hexane-ether ($95: 5$)] indicated the absence of any starting material. The solvent was removed under reduced pressure and water ($400 \mathrm{~cm}^{3}$) added to the residue. The mixture was extracted into toluene $\left(3 \times 400 \mathrm{~cm}^{3}\right)$ and the combined organic layers dried over $\mathrm{M} \mathrm{SSO}_{4}$, filtered and the solvent removed to afford a brown sticky solid. The crude product was subjected to flash chromatography [silica, hexane-ether (100:1-95:5)] to give 2-benzyloxy6 -phenylethynylpyridine as a pale yellow solid. The solid was recrystallised from hexane to give pale yellow crystals (7.69 g , 70%). IR ($\mathrm{K} \mathrm{Br}^{2} \mathrm{~cm}^{-1}$) 2208 [$\mathrm{v}(\mathrm{C} \equiv \mathrm{C})$], 1582, 1489, 1440. M.p. 70.4-72.4 ${ }^{\circ} \mathrm{C}$. N M R : ${ }^{1} \mathrm{H}, \delta 7.63-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.48-7.33(\mathrm{~m}$, $6 \mathrm{H}), 7.17$ ($\left.\mathrm{d}, \mathrm{J}_{\text {нн }} 7.1,1 \mathrm{H}\right), 6.78$ [dd, J $\mathrm{HH} 8.6, \mathrm{~J}_{\mathrm{HH}} 0.8, \mathrm{~Hz}, 1 \mathrm{H}$], $\left.5.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH})_{2}\right){ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(62.9 \mathrm{M} \mathrm{Hz}), \delta 163.3(\mathrm{~s}, \mathrm{C}), 140.1$ (s, C), 138.6 (s, CH), 136.9 (s, C), 131.9 (s, C), 128.7 (s, 2CH), 128.3 (s, CH), 128.2 (s, 2CH), 128.1 (s, 2CH), 127.8 (s, CH), 122.3 (s, C), 120.9 (s, CH), $111.2(\mathrm{~s}, \mathrm{CH}$), 88.7 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{C}$), 88.5 (s , $\mathrm{C} \equiv \mathrm{C}$) and $67.8\left(\mathrm{~s}, \mathrm{PhCH}_{2}\right)$.
(iii) 6-(P henylethynyl)-2-pyridone (H pehp). A solution of 2 -benzyloxy-6-phenylethynylpyridine ($8.17 \mathrm{~g}, 28.7 \mathrm{mmol}$) in trifluoroacetic acid $\left(120 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 4 d . The trifluoroacetic acid was stripped off under reduced pressure and the residue treated with benzene ($50 \mathrm{~cm}^{3}$) then re-evaporated. The residue was partitioned between 1 m sodium hydroxide solution ($200 \mathrm{~cm}^{3}$) and ethyl acetate ($200 \mathrm{~cm}^{3}$) and the layers separated. The aqueous layer was acidified to pH 1 by the addition of 6 м hydrochloride acid, then extracted into ethyl acetate $\left(2 \times 200 \mathrm{~cm}^{3}\right)$. The combined organic layers were dried over $\mathrm{M} \mathrm{SSO}_{4}$, filtered and the solvent removed to give a sticky brown solid. The crude product was then triturated with ether to give H pehp $\cdot 0.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as an off-white solid (5.98 g , 83%). In general, H pehp $\cdot 0.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ was used in further reactions, but pure H pehp could be obtained by recrystallisation from ethyl acetate (Found: C, 66.85; H, 3.75; N, 5.35. $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO} \cdot 0.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ requires $\left.\mathrm{C}, 66.65 ; \mathrm{H}, 3.75 ; \mathrm{N}, 5.55 \%\right)$. IR (K Br disc, cm^{-1}) $2932[v(\mathrm{~N}-\mathrm{H})], 2213[v(\mathrm{C} \equiv \mathrm{O})], 1687$ $[v(\mathrm{C}=0)], 1654,1600 . \mathrm{M} . \mathrm{p} .173-175{ }^{\circ} \mathrm{C}$. N M R : ${ }^{1} \mathrm{H}$, $\delta 12.35(\mathrm{~s}, 1$ H, N H) , 7.58-7.51 (m, 2 H), 7.41-7.20 (m, 4 H), 6.62 [dd, J нн $\left.9.2, J_{\mathrm{HH}} 0.8,1 \mathrm{H}\right], 6.48\left[\mathrm{dd}, \mathrm{J}_{\mathrm{HH}} 6.8, \mathrm{~J}_{\mathrm{HH}} 0.6 \mathrm{~Hz}, 1 \mathrm{H}\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ (62.9 M Hz), $\delta 164.3$ ($\mathrm{s}, \mathrm{C}=0$), 140.1 (s, CH), 131.9 ($\mathrm{s}, 2 \mathrm{CH}, \mathrm{Ph}$), 129.5 (s, CH , Ph), 129.3 (s, C), 128.3 (s, 2CH, Ph), 121.0 (s, C, $\mathrm{Ph}), 120.7(\mathrm{~s}, \mathrm{CH}), 111.7(\mathrm{~s}, \mathrm{CH}), 94.6(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C})$ and $81.9(\mathrm{~s}$, $\mathrm{C} \equiv \mathrm{C})$.
[$\mathrm{Cu}_{5}(\mathbf{O M e})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$ (pehp) $\left.)_{6}(\mathrm{Cl})\right]$ 1. Hydrated copper(II) nitrate ($0.21 \mathrm{~g}, 0.87 \mathrm{mmol}$) and the sodium salt of H pehp. $0.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($0.50 \mathrm{~g}, 1.75 \mathrm{mmol}$, prepared by deprotonation of the adduct with 1.5 equivalents of NaOH in MeOH , followed by evaporation to dryness) were mixed intimately together as solids. The dark green paste formed was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ and the resulting dark green solution was
filtered. The filtrate was concentrated to $10 \mathrm{~cm}^{3}$ and methanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to give green crystals of $1(0.81 \mathrm{~g}, 55 \%)$ after 2-3 d (Found: C, 54.95: H, 3.35; N, 4.35. $\mathrm{C}_{82} \mathrm{H}_{54} \mathrm{CICu}_{5} \mathrm{~F}_{3}{ }^{-}$ $\mathrm{N}_{6} \mathrm{O}_{10} \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{CH}_{3} \mathrm{OH}$ requires $\left.\mathrm{C}, 54.80 ; \mathrm{H}, 3.25 ; \mathrm{N}, 4.55 \%\right)$. IR ($\mathrm{K} \mathrm{Br} \mathrm{disc}, \mathrm{cm}^{-1}$) $2216[\mathrm{v}(\mathrm{C}=\mathrm{C})], 1676,1589,1560,1492$, 1261, 1203, 1027, 809, 754, 726 and 688. FA B-M S: significant peaks (m / z), possible assignments: $1625,\left[\mathrm{Cu}_{5}(\mathrm{OM} \mathrm{e})\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\right.$ (pehp) $]_{6}$; 1513, $\left[\mathrm{Cu}_{5}\left(\mathrm{OM} \mathrm{e)}\right.\right.$ (pehp) $\left.{ }_{6}\right] ; 1450,\left[\mathrm{Cu}_{4}\left(\mathrm{OM} \mathrm{e)}\right.\right.$ (pehp) $\left.{ }_{6}\right] ;$ 1256, $\left[\mathrm{Cu}_{4}\left(\mathrm{OM} \mathrm{e)}(\text { pehp })_{5}\right] ; 1224,\left[\mathrm{Cu}_{4}(\text { pehp })_{5}\right] ; 1030,\left[\mathrm{Cu}_{4}{ }^{-}\right.\right.$ (pehp) $\left.)_{4}\right] ; 967,\left[\mathrm{Cu}_{3}(\text { pehp })_{4}\right] ; 772,\left[\mathrm{Cu}_{3}(\text { pehp })_{3}\right] ; 708,\left[\mathrm{Cu}_{2}(\text { pehp })_{3}\right] ;$ 514, $\left[\mathrm{Cu}_{2}(\text { pehp })_{2}\right]$.
$\left[\mathrm{C}_{5}\left(\mathrm{OM} \mathrm{e}_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\text { pehp })_{6}\left(\mathrm{NO}_{3}\right)\right]\right.$ 2. Complex $\mathbf{2}$ was made using the procedure outlined for 1 but, after concentration of the filtrate, $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ containing an excess of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was added to give green crystals of $2(0.60 \mathrm{~g}$, 40\%) after 2-3 d (Found: C, 56.65; H, 2.95; N, 5.65. $\mathrm{C}_{82} \mathrm{H}_{54} \mathrm{Cu}_{5} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{13} \cdot 1.5 \mathrm{CH}_{3} \mathrm{OH}$ requires $\mathrm{C}, 56.70 ; \mathrm{H}, 3.40 ; \mathrm{N}$, 5.55%). IR ($\mathrm{K} \mathrm{Br} \mathrm{disc}, \mathrm{cm}^{-1}$) 2213 [$\mathrm{v}(\mathrm{C} \equiv \mathrm{C})$], 1671, 1589, 1546, $1289\left[\mathrm{v}\left(\mathrm{O}_{2} \mathrm{~N}-\mathrm{O}\right)\right], 1202,1022,804,760$ and 717 . $\mathrm{FAB}-\mathrm{M} \mathrm{S}$: significant peaks (m / z) possible assignments: 1625 , $\left[\mathrm{Cu}_{5}{ }^{-}\right.$ (OM e) $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \text {) (pehp) }\right)_{6}$]; 1593, $\left[\mathrm{Cu}_{5}(\text { pehp })_{6}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\right] ; 1512$, $\left[\mathrm{Cu}_{5}\left(\mathrm{OM} \mathrm{e)}(\mathrm{pehp})_{6}\right] ; 1480,\left[\mathrm{Cu}_{5}(\text { pehp })_{6}\right] ; 1339,\left[\mathrm{Cu}_{4}(\text { pehp })_{5}{ }^{-}\right.\right.$ $\left.\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\right] ; 1256,\left[\mathrm{Cu}_{4}\left(\mathrm{OM} \mathrm{e)}\right.\right.$ (pehp) 5]; 1224, [Cu $\left.{ }_{4}(\text { pehp })_{5}\right] ; 1143$, $\left[\mathrm{Cu}_{4}(\text { pehp })_{4}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\right] ; 1030,\left[\mathrm{Cu}_{4}(\text { pehp })_{4}\right] ; 967,\left[\mathrm{Cu}_{3}(\text { pehp })_{4}\right] ;$ 772, $\left[\mathrm{Cu}_{3}(\text { pehp })_{4}\right] ; 708,\left[\mathrm{Cu}_{2}(\text { pehp })_{3}\right]$.
[$\left.\mathrm{Cu}_{5}(\mathrm{OH})\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{3}(\text { pehp })_{6}\right]$ 3. The same procedure as used for $\mathbf{1}$ was followed, except that after concentration of the filtrate to $10 \mathrm{~cm}^{3}$ it was allowed to stand at room temperature for 3 w to give green plates of 3 ($0.16 \mathrm{~g}, 10 \%$) (Found: C, 59.90; H, 3.75; $\mathrm{N}, 4.55 . \mathrm{C}_{82} \mathrm{H}_{49} \mathrm{Cu}_{5} \mathrm{~F}_{9} \mathrm{~N}_{6} \mathrm{O}_{13} \cdot 2.4 \mathrm{H}$ pehp requires $\mathrm{C}, 59.80 ; \mathrm{H}$, 3.05; N, 5.10\%).IR ($\mathrm{K} \mathrm{Br}^{2} \mathrm{~cm}^{-1}$) 3250 [$\mathrm{v}(\mathrm{O}-\mathrm{H})$], 2217 [$\mathrm{v}(\mathrm{C} \equiv \mathrm{C})$], 1666, 1603, 1534, 1492, 1358, 1294, 1261, 1205, 1158, 802, 757, 690 and 557. FAB-M S: significant peaks (m / z), possible assignments: 1513, $\left.\left[\mathrm{Cu}_{5}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2} \text { (pehp) }\right)_{5}\right] ; 1400, \quad\left[\mathrm{Cu}_{5}{ }^{-}\right.$ $\left.\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\text { pehp })_{5}\right] ; 1287,\left[\mathrm{Cu}_{5}(\text { pehp })_{5}\right] ; 1224,\left[\mathrm{Cu} \mathrm{u}_{4}(\text { pehp })_{5}\right] ; 1030$, $\left[\mathrm{Cu}_{4}(\text { pehp })_{4}\right] ;$ 967, $\left[\mathrm{Cu}_{3}(\text { pehp })_{4}\right] ;$ 772, $\left[\mathrm{Cu}_{3}(\text { pehp })_{3}\right] ; 708$, $\left[\mathrm{Cu}_{2}(\text { pehp })_{3}\right] ; 515,\left[\mathrm{Cu}_{2}(\text { pehp })_{2}\right]$.

C rystallography

Crystal data and data collection and refinement parameters for H pehp and 1-3 are given in Table 1; selected bond distances and angles in Tables 2-4. The structure of 1 H pehp was performed on the free ligand, and not on the trifluoroacetate adduct.

D ata collection and processing. D ata were collected using $\omega-\theta$ scans on a StoëStadi-4 four-circle diffractometer equipped with an 0 xford C ryosystems low-temperature device ${ }^{11}$ operating at 220.0(2) K, using Cu-K α radiation for H pehp, 1 and 3 and graphite-monochromated $\mathrm{M} \mathrm{o-K} \alpha$ radiation for 2. All data were corrected for L orentz and polarisation effects.D ata for 1-3 were corrected for absorption using ψ-scans. For 2 a lamina correction was used, based on 238 data, which gave $T_{\text {min }}$ and $T_{\text {max }}$ of 0.506 and 0.814 respectively. For 3 an ellipsoidal correction was used, based on 345 data, which gave $T_{\text {min }}$ and $T_{\text {max }}$ of 0.287 and 0.622 respectively.

Structure analysis and refinement. Following data reduction all structures were solved by direct methods (SIR 92^{12} for H pehp or SHELXS 86^{13} for 1-3) and refined by full-matrix least squares against F for H pehp (CRY STALS) ${ }^{14}$ and F^{2} for 1-3 (SHELXL). ${ }^{15}$ In H pehp and 3 all non-hydrogen atoms were refined anisotropically, whereas in $\mathbf{1}$ and $\mathbf{2}$ only the full-weight atoms constituting the complex were so refined, the solvent of crystallisation being modelled isotropically. Hydrogen atoms were placed in calculated positions in all structures. In 3 there is a two-fold rotational disorder in two of the three CF_{3} groups;

Table 1 Experimental data for the X-ray diffraction studies of H pehp and complexes 1-3

Compound	H pehp	1	2	3
Formula	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}$	$\begin{aligned} & \mathrm{C}_{82} \mathrm{H}_{54} \mathrm{ClCu}_{5} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{10} \\ & \mathrm{CH}_{4} \mathrm{O} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{88} \mathrm{H}_{54} \mathrm{Cu}_{5} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{13} \\ & 1.91 \mathrm{CH} \mathrm{H}_{4} \mathrm{O} \cdot 0.13 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{82} \mathrm{H}_{49} \mathrm{Cu}_{5} \mathrm{~F}_{9} \mathrm{~N}_{6} \mathrm{O}_{13} \\ & 3.7 \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$
M	195.2	1895.4	1783.4	2153.2
Crystal system	M onoclinic	M onoclinic	Triclinic	Triclinic
Space group	P $21 / \mathrm{n}$	P $21 / \mathrm{n}$	P1	P1
a/Å	5.887(4)	19.317(14)	12.021(8)	13.299(4)
b/Å	16.047(4)	19.133(14)	16.822(8)	16.292(5)
c/Å	10.697(3)	24.03(2)	23.058(17)	22.808(7)
$\alpha /{ }^{\circ}$	90	90	92.05(5)	86.74(3)
$\beta /{ }^{\circ}$	92.27(4)	108.82(6)	94.95(7)	89.85(2)
$\gamma /{ }^{\circ}$	90	90	110.59(4)	68.60(2)
\cup / \AA^{3}	1010	8410	4338	4529
Z	4	4	2	2
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.280	1.497	1.365	1.579
Crystal size/mm	$0.54 \times 0.27 \times 0.16$	$0.51 \times 0.31 \times 0.04$	$0.35 \times 0.23 \times 0.19$	$0.31 \times 0.27 \times 0.12$
Crystal shape and colour	Colourless slab	Green plate	Green block	G reen tablet
R adiation	Cu-K α	Cu-K α	M o-K α	Cu-K α
μ / mm^{-1}	0.62	3.43	1.28	4.02
U nique data	1314	9561	11950	13287
Observed data	1135	4876	7751	7431
Parameters	137	1046	1032	1126
R estraints	0	113	72	66
M ax. Δ / σ ratio	0.007	-0.048	-0.019	0.028
R 1, wR ${ }^{\text {a }}$ (wR for H pehp)	0.0468, 0.0602	0.0744, 0.1995	0.0821, 0.2754	0.0966, 0.2586
Weighting scheme, $\mathrm{w}^{-1 \mathrm{~b}}$	Chebychev three-term polynomial	$\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0871 P)^{2}\right]$	$\begin{aligned} & {\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.1215 \mathrm{P})^{2}+\right.} \\ & 29.5 \mathrm{P}] \end{aligned}$	$\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.1599 P)^{2}\right]$
G oodness of fit	0.821	1.006	1.055	0.953
L argest residuals/e \AA^{-3}	+0.15, -0.16	+0.621, -0.576	+1.187, - 0.857	+1.242, -1.776

${ }^{a} R 1$ based on observed data, wR 2 on all unique data. R efinement on F for H pehp and F^{2} for $1-3$. ${ }^{\mathrm{b}} \mathrm{P}={ }_{3}^{1}\left[\max \left(\mathrm{~F}_{0}{ }^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right]$.
these were refined with similarity restraints on the $\mathrm{C}-\mathrm{F}$ distances and FCF angles, while the anisotropic displacement parameters of pairs of fluorine atoms either opposite one another or very close to one another were constrained to be equal. In addition to two molecules of ordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the structure of 3 it was clear from $\Delta \mathrm{F}$ maps that there were two more regions containing disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules. These (amounting to $1.4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ per formula unit) were treated in the manner described in reference 16 . In 1 phenyl groups 1 and 3 are rotationally disordered about a common pivot atom [C(91) and C(93) respectively]. In ring 1 the geometry of the ring was restrained explicitly, with common isotropic thermal parameters for chemically equivalent atoms; ring 3 was restrained to have two-fold symmetry and independent isotropic thermal parameters refined for each atom. The $\mathrm{CF}_{\mathbf{3}}$ groups in $\mathbf{1}$ and $\mathbf{2}$ were rotationally disordered and treated as described above for 3.
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/492.

M agnetic measurements

Variable-temperature magnetic measurements on complexes 13 in the region $1.8-300 \mathrm{~K}$ were made using a SQUID magnetometer (Quantum Design) with samples sealed in capsules. In all cases diamagnetic corrections for the sample holders were applied to the data. Diamagnetic corrections for the samples were determined from Pascal's constants ${ }^{17}$ and literature values. ${ }^{18}$

Results and D iscussion

Synthesis and characterisation of 6-(phenylethynyl)-2-pyridone (H pehp)

The ligand, 6-(phenylethynyl)-2-pyridone (H pehp) was synthesised in a three-step procedure (see Scheme 1). Firstly, treat-

Table 2 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for H pehp

$\mathrm{N}(1)-\mathrm{C}(2)$	$1.367(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.199(3)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.378(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.431(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.362(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.395(3)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.427(3)$	$\mathrm{C}(9)-\mathrm{C}(14)$	$1.396(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.412(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.380(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.350(3)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.382(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.427(3)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.367(3)$
$\mathrm{C}(6)-0(6)$	$1.252(2)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.381(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$123.7(2)$	$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$175.3(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.4(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$178.4(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$115.1(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.8(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$124.5(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$119.9(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$117.9(2)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$119.3(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.6(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.5(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.8(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.9(2)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$115.6(2)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$119.6(2)$
$\mathrm{N}(1)-\mathrm{C}(6)-0(6)$	$119.6(2)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.9(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-0(6)$	$124.9(2)$	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$119.8(2)$

ment of 2,6 -dibromopyridine with benzyl alcohol and potassium hydroxide in toluene using 18 -crown- 6 as a phase-transfer catalyst ${ }^{19}$ gave the pyridine benzyl ether, 2-bromo-6benzyloxypyridine in quantitative yield. Secondly, coupling of 2-bromo-6-benzyloxypyridine with phenylacetylene to give 2-benzyloxy-6-phenylethynylpyridine was achieved in high yield (70\%) upon treatment with a catalytic amount of bis(triphenylphosphine) palladium dichloride-copper(I) iodide in diethylamine ${ }^{20}$ Thirdly, the benzyl protecting group was removed by treatment with trifluoroacetic acid using the procedure outlined by M arsh and Goodman, ${ }^{21}$ to give H pehp $\cdot 0.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (83%). Pure H pehp could be obtained by recrystallisation from ethyl acetate.
A single crystal of H pehp was the subject of an X -ray diffraction study at 220 K . Selected bond distances and angles are given in Table 2. Fig. 1 shows a view of four H pehp molecules, two of which have self associated into dimers by hydrogen bonding through the NH hydrogens and the oxygen functionalities. The $C(6)-0(6)$ bond length $[1.252(2) \AA$] is consistent

Fig. 1 A ssociation of four molecules of H pehp in the crystal, also showing the numbering scheme adopted

Fig. 2 Structure of $\mathbf{1}$ in the crystal showing the numbering scheme adopted
with a double bond supporting the preference for the 2 pyridone over the 2-pyridinol tautomer. A similar tautomeric preference is observed in the solid-state structure of 5-chloro-2pyridone ${ }^{22}$ while in the 6 -halogeno-substituted derivatives, H chp and H bhp, the pyridinol tautomer is preferred. ${ }^{23} \mathrm{Fig} .1$ also shows possible but very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} \equiv \mathrm{C}$ hydrogen bonds between p-phenyl hydrogens of one molecule and the alkyne moiety of another $[\mathrm{H}(13 \mathrm{~b}) \cdots \mathrm{C}(8 \mathrm{a})$ 3.094(3), $\mathrm{H}(13 \mathrm{~b}) \cdots \mathrm{C}(7 \mathrm{a}) 3.247(3) \AA$] which may be compared with the recently reported $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} \equiv \mathrm{C}$ intermolecular contacts of 2.54 \AA in DL-prop-2-ynylglycine. ${ }^{24}$ The packing of molecules within the crystal of H pehp also resembles that in de-prop-2ynylglycine with co-operative $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions resulting in a zigzag arrangement of the dimeric 2 -pyridone units.

The infrared data supports the preference for the pyridone over pyridinol tautomer with a well defined $v(\mathrm{NH})$ stretch occurring at $2932 \mathrm{~cm}^{-1}$. In addition, IR reveals a $v(\mathrm{C} \equiv \mathrm{C})$ band at $2213 \mathrm{~cm}^{-1}$ while the NH proton can be detected as a singlet at $\delta 12.35$ in the room temperature ${ }^{1} \mathrm{H}$ N M R spectrum suggesting a strong hydrogen bond also exists in CDCl_{3} solution.

A lthough pure H pehp could be obtained from recrystallisation from ethyl acetate and was the subject of structural studies, reactions involving the trifluoroacetic acid adduct are reported below.

Fig. $\mathbf{3}$ Structure of $\mathbf{2}$ in the crystal showing the numbering scheme adopted

Synthesis and characterisation of complexes 1-3

The sodium salt of the H pehp• $0.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ adduct was prepared by deprotonation with NaOH then mixed in a $2: 1$ ratio with hydrated copper(II) nitrate, and the two powders were ground together in a pestle and mortar. The resulting olive green paste was extracted with dichloromethane to give a dark green solution which was filtered to remove unreacted starting materials. The pentanuclear copper complexes 1-3 were crystallised as follows. The yields reported are for the crystalline material obtained. Selected bond distances and angles for all three structures are given in Tables 3 and 4.
(i) Addition of methanol to the dichloromethane solution: concentration of the dichloromethane solution and addition of an equal volume of methanol gave green plates in 55% yield after 2-3 d. A single crystal X-ray diffraction study at 220 K , showed a pentanuclear copper(II) complex of composition $\left[\mathrm{Cu}_{5}(\mathrm{OM} \mathrm{e})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\text { pehp })_{6}(\mathrm{Cl})\right]$ 1, a view of which is shown in Fig. 2.
(ii) Addition of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in methanol to the dichloromethane solution: concentration of the dichloromethane solution and addition of an equal volume of methanol containing an excess of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ gave green blocks after 2-3 d (40\%). A single crystal X-ray diffraction study at 220 K , revealed a closely related pentanuclear copper(II) complex with composition $\left[\mathrm{Cu}_{5}(\mathrm{OM} \mathrm{e})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\text { pehp })_{6}\left(\mathrm{NO}_{3}\right)\right]$ 2, a view of which is shown in Fig . 3.
(iii) Prolonged standing of a dichloromethane solution: concentration of the dichloromethane solution and prolonged standing (ca. 3 w) at room temperature gave green plates in 10% yield. A single crystal X-ray diffraction study at 220 K revealed a less symmetric pentanuclear copper(II) complex of composition $\left[\mathrm{Cu}_{5}(\mathrm{OH})\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{3}(\mathrm{pehp})_{6}\right]$ 3, which is shown in Fig. 4.
The structures of 1-3 (Figs. 2-4) are related with each containing five copper atoms held together by a variety of bridging ligands in a capped butterfly arrangement (Fig. 5). In 1 and 2 this array has pseudo-two-fold symmetry with a noncrystallographic axis passing through $\mathrm{Cu}(4)$ and the mid-point of the $\mathrm{Cu}(1) \cdots \mathrm{Cu}(5)$ vector. Complex $\mathbf{3}$ is less symmetric due to inequivalent cap-wingtip bridging ligands. The coordination numbers within the Cu_{5} cores are the same with two four-co-ordinate copper atoms occupying the wingtip sites [Cu(2), Cu(3)] and three five-co-ordinate copper atoms occupying the body and cap sites [$\mathrm{Cu}(1), \mathrm{Cu}(5), \mathrm{Cu}(4)]$. The four-coordinate sites have a distorted-square-planar geometry, while the five-co-ordinate sites can be described as distorted trigonal

Fig. 4 Structure of $\mathbf{3}$ in the crystal showing the numbering scheme adopted
bipyramidal with the axial sites being defined at $\mathrm{Cu}(1)$, by $\mathrm{O}(61)$ and $\mathrm{O}(62)\left[\mathrm{O}(61)-\mathrm{Cu}(1)-\mathrm{O}(62) \mathrm{ca}. 167^{\circ}\right]$ and at $\mathrm{Cu}(5)$, by $\mathrm{O}(63)$ and $\mathrm{O}(65)\left[\mathrm{O}(63)-\mathrm{Cu}(5)-\mathrm{O}(65) \mathrm{ca}. 169^{\circ}\right]$ and at the capping $\mathrm{Cu}(4)$, by $\mathrm{O}(1 \mathrm{M})$ and $\mathrm{O}(2 \mathrm{M})$ in 1 and $2[\mathrm{O}(1 \mathrm{M})-$ $\mathrm{Cu}(4)-\mathrm{O}(2 \mathrm{M}): 159.2(3) \mathbf{1}, 164.3(3)^{\circ}$ 2] while at $\mathrm{Cu}(4)$ for 3 by $\mathrm{O}(1)$ and $\mathrm{O}(2 \mathrm{~B})\left[\mathrm{O}(1)-\mathrm{Cu}(4)-\mathrm{O}(2 \mathrm{~B}): 170.4(3)^{\circ}\right]$.

The co-ordination spheres of the copper centres in 1-3 are similar with each complex containing six deprotonated H pehp molecules which bridge within the Cu_{5} core through the exocyclic oxygen and ring nitrogen atoms in three different ways: (i) 1,3-bridging one site on the body and a wingtip $[\mathrm{Cu}(5) \cdots \mathrm{Cu}(3)$ and $\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)]$; (ii) $1,1^{\prime}, 3$-bridging across the body and to a wingtip $[\mathrm{Cu}(1) \cdots \mathrm{Cu}(5) \cdots \mathrm{Cu}(3)$ and $\mathrm{Cu}(1) \cdots \mathrm{Cu}(5) \cdots \mathrm{Cu}(2)]$; (iii) 1,1', 3-bridging the cap, a wingtip and one site on the body $[\mathrm{Cu}(4) \cdots \mathrm{Cu}(3) \cdots \mathrm{Cu}(1)$ and $\mathrm{Cu}(4) \cdots \mathrm{Cu}(3) \cdots \mathrm{Cu}(5)]$.

To complete the co-ordination spheres in 1-3 a further four monoanionic ligands are required. In $\mathbf{1}$ and $\mathbf{2}$ there are two bridging methoxide groups [wingtip-cap; $\mathrm{Cu}(2) \cdots \mathrm{Cu}(4)$, $\mathrm{Cu}(3) \cdots \mathrm{Cu}(4)]$, one body-bridging trifluoroacetate $[\mathrm{Cu}(1) \cdots \mathrm{Cu}(5)]$ and a terminally bound anion $\left[\mathrm{Cl}^{-} 1\right.$ or $\mathrm{NO}_{3}{ }^{-}$ $\mathbf{2}$ on $\mathrm{Cu}(4)]$. The source of the terminal chloride anion for $\mathbf{1}$ is presumably the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent as the moderate, and reproducible, yield of 1 indicates this cannot be due to an impurity. In 3 there is one bridging hydroxide group [$\mathrm{Cu}(3)-\mathrm{O}(\mathrm{H})-\mathrm{Cu}(4)]$ and three trifluoroacetate groups, which are body bridging $[\mathrm{Cu}(1) \cdots \mathrm{Cu}(5)]$, one wingtip-cap bridging $[\mathrm{Cu}(2) \cdots \mathrm{Cu}(4)]$ and one terminal [Cu(4)].
The $\mathrm{Cu} \cdots \mathrm{Cu}$ distances within the complexes vary in a similar manner for both $\mathbf{1}$ and $\mathbf{2}$. The shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts, 3.050(3) and 3.058(3) \AA in 1 and 3.024(6) and 3.049(6) \AA in 2, occur between the capping Cu site $[\mathrm{Cu}(4)]$ and the wingtip Cu atoms $[\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)]$. One pair of body-wingtip contacts $[\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$ and $\mathrm{Cu}(3) \cdots \mathrm{Cu}(5)]$ are intermediate, 3.178(3) and $3.148(3)$ in 1 and $3.148(6)$ and $3.197(6) \AA$ in 2 , and slightly shorter than the $\mathrm{Cu}(1) \cdots \mathrm{Cu}(5)$ contacts of $3.194(3)$ and $3.235(6) \AA$ in 1 and 2 respectively. The second pair of bodywingtip contacts $[\mathrm{Cu}(1) \cdots \mathrm{Cu}(3)$ and $\mathrm{Cu}(2) \cdots \mathrm{Cu}(5)]$ are longer in both complexes; in 1 the contacts are 4.461(4) and $4.400(4) \AA$ respectively, and in $24.437(4)$ and $4.445(4) \AA$. This difference between the two pairs of body-wingtip contacts is a large distortion from an ideal tetrahedron, capped or otherwise.

Within such a distorted metal array the description chosen is somewhat arbitary, however alternative descriptions of the polyhedron, e.g. as a pentagon, are much less satisfactory than the description based on a capped butterfly. For a regular pentagon the $\mathrm{Cu} \cdots \mathrm{Cu}$ contacts should all be consistent, where here they vary from 3.050(3) to 3.194 (3) \AA in 1, and from

Fig. 5 'Capped-butterfly' metal polyhedron in 1. The numbering of metal sites is common to $\mathbf{2}$ and $\mathbf{3}$
$3.024(4)$ to $3.235(6) \AA$ in $\mathbf{2}$. M ore seriously, four of the five internal angles of the 'pentagon' are in the range 88-92' for structures 1 and 2, rather than close to 108° as required for a pentagon. Finally in both structures the 'pentagon' is far from planar, with the $\mathrm{Cu}(1) \cdots \mathrm{Cu}(5)$ vector at an angle of 36° to the mean plane of the other three Cu atoms within the cage.

In 3 the capping site $[\mathrm{Cu}(4)]$ is bridged to the two wingtip sites in dissimilar ways. The $\mathrm{Cu}(3) \cdots \mathrm{Cu}(4)$ vector is bridged by an hydroxide ligand and a $\mu-0$ from pehp, and this distance is similar $[3.042(7) \AA$] to the equivalent contacts in $\mathbf{1}$ and $\mathbf{2}$. The $\mathrm{Cu}(2) \cdots \mathrm{Cu}(4)$ vector is bridged by a trifluoroacetate group and a $\mu-0$ from pehp, and the contact of $3.638(7) \AA$ is much longer. The remaining $\mathrm{Cu} \cdots \mathrm{Cu}$ distances in $\mathbf{3}$ are very similar to equivalent contacts in $\mathbf{1}$ and $\mathbf{2}$. It is also noteworthy that the bridging hydroxide in $\mathbf{3}$ and the methoxide groups in $\mathbf{1}$ and $\mathbf{2}$ appear to exert the same structural requirements as exemplified both by the similar $\mathrm{Cu}(3) \cdots \mathrm{Cu}(4)$ distances and the $\mathrm{Cu}(4)-\mathrm{O}(\mathrm{R})-\mathrm{Cu}(3)$ angles $[\mathrm{R}=\mathrm{Me}, 106.9(3) 1$ vs. $\mathrm{R}=\mathrm{Me}$, 106.4(3) 2 vs. $\mathrm{R}=\mathrm{H}, 107.7(3)^{\circ} \mathbf{3}$].

Intramolecular hydrogen-bond interactions also play roles in the structures of 1-3 which seem to be of two types namely, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} \equiv \mathrm{C}$. In 3 a conventional hydrogenbond interaction exists between $\mathrm{H}(1)$ of the bridging hydroxide and $\mathrm{O}(2 \mathrm{C})$ of the terminal trifluoroacetate on $\mathrm{Cu}(4)$ [$\mathrm{H}(1) \cdots \mathrm{O}$ (2C) $1.969(4) \AA$] while more unusually there exist some short $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} \equiv \mathrm{C}$ contacts between pehp groups in all the structures. In 3 the o-phenyl hydrogen $\mathrm{H}(141)$ has a contact with an alkyne moiety $[H(141) \cdots C$ (85) 2.68; H (141) \cdots C (75) $2.61 \AA$] which is significantly shorter than the $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} \equiv \mathrm{C}$ intermolecular distance in H pehp $[\mathrm{H}(13 \mathrm{~b}) \cdots \mathrm{C}(8 \mathrm{a}) 3.09$, H (13b) $\cdots \mathrm{C}(7 \mathrm{a}) 3.25 \AA$] but compares well with the reported value of $2.54 \AA$ in DL-prop-2-ynylglycine ${ }^{24}$ Therefore comparison of the structures of H pehp and $\mathbf{3}$ suggests that the shortness of the contact in $\mathbf{3}$ is imposed by other structurally directing interactions, and is in itself unlikely to be of significance.

Complexes 1-3 were, in addition, characterised by infrared and mass spectrometry and by elemental analysis. It has previously been observed that the pyridonate-bridged species, $\left[\mathrm{Cu}_{6} \mathrm{Na}(\mathrm{mhp})_{12}\left[\mathrm{NO}_{3}\right]\right.$ and $\left[\mathrm{Cu}_{8}(\mathrm{O})_{2}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{4}(\mathrm{xhp})_{8}\right]$ (where $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$ or CF_{3} and xhp $=6$-chloro-, 6 -bromo- or 6-methyl-pyridonate) give clear FAB-M S results so it was hoped similar good quality mass spectroscopic data would be observed for the pentanuclear complexes. Indeed, the FAB mass spectra for 1-3 gave sensible fragmentation peaks although the parent-ion peaks themselves were not seen. For example, in 2 peaks are seen for both $\left[\mathrm{Cu}_{5}(\mathrm{OM} \mathrm{e})\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\text { pehp })_{6}\right]\left(\mathrm{M}+{ }^{+}\right.$ $\mathrm{OMe}-\mathrm{NO}_{3}$) and $\left[\mathrm{Cu}_{5}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)(\mathrm{pehp})_{6}\right] \quad(\mathrm{M}+-2 \mathrm{OMe}-$ NO_{3}), and a large number of polycopper fragments down to [Cu_{2} (pehp) $)_{2}$. A general observation for all the spectra is that the methoxide, trifluoroacetate and nitrate/chloride ligands tend to be lost first during the fragmentation to leave units of the general formula $\left[C u_{x}(\text { pehp })_{y}\right.$]. The IR spectra of $1-3$ were

Table 3 Selected bond distances (\AA) for compounds 1-3

Compound	1	2	3	Compound	1	2	3
$\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$	3.178(3)	3.148(6)	3.156(7)	$\mathrm{Cu}(3)-\mathrm{O}(64)$	1.971(7)	1.978(7)	2.000(6)
$\mathrm{Cu}(1) \cdots \mathrm{Cu}(5)$	3.194(3)	3.235(6)	3.259(7)	$\mathrm{Cu}(3)-\mathrm{O}(1)$			1.879(6)
$\mathrm{Cu}(2) \cdots \mathrm{Cu}(4)$	3.058(3)	3.024(6)	3.638(7)	$\mathrm{Cu}(3)-\mathrm{O}(1 \mathrm{M})$	1.902(8)	1.900(7)	
$\mathrm{Cu}(3) \cdots \mathrm{Cu}(4)$	3.050(3)	3.049(6)	3.042(7)	$\mathrm{Cu}(4)-\mathrm{O}(64)$	2.131(7)	2.183(7)	2.010(6)
$\mathrm{Cu}(3) \cdots \mathrm{Cu}(5)$	3.148(3)	3.197(6)	3.206(7)	$\mathrm{Cu}(4)-\mathrm{O}(66)$	2.195(70	2.067(7)	2.249(6)
$\mathrm{Cu}(1)-0$ (61)	1.924(7)	1.937(6)	1.932(6)	$\mathrm{Cu}(4)-\mathrm{O}(1)$			1.889(6)
$\mathrm{Cu}(1)-\mathrm{O}(62)$	1.908(7)	1.903(6)	1.922(6)	$\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{M})$	1.894(8)	1.907(7)	
$\mathrm{Cu}(1)-\mathrm{O}(63)$	2.271(8)	2.351(7)	2.370(6)	$\mathrm{Cu}(4)-\mathrm{O}(2 \mathrm{~B})$			1.949(6)
$\mathrm{Cu}(1)-\mathrm{O}(2 \mathrm{~A})$	2.048(8)	2.020(7)	2.038(6)	$\mathrm{Cu}(4)-\mathrm{O}(2 \mathrm{M})$	1.920(8)	1.929(6)	
$\mathrm{Cu}(1)-\mathrm{N}(16)$	2.000(9)	2.031(8)	1.999(7)	$\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{C})$			1.968(6)
$\mathrm{Cu}(2)-\mathrm{N}(12)$	1.975(9)	1.984(8)	1.979(8)	$\mathrm{Cu}(4)-\mathrm{Cl}$	2.243(7)		
$\mathrm{Cu}(2)-\mathrm{N}(13)$	1.971(9)	1.996(8)	1.979(7)	$\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{~T})$		2.087(11)	
$\mathrm{Cu}(2)-\mathrm{O}(66)$	1.969(7)	1.970(6)	1.910(6)	$\mathrm{Cu}(5)-\mathrm{O}(61)$	2.263(7)	2.337(6)	2.418(6)
$\mathrm{Cu}(2)-\mathrm{O}(1 \mathrm{~B})$			2.007(7)	$\mathrm{Cu}(5)-\mathrm{O}(63)$	1.946 (7)	1.944(6)	1.942(6)
$\mathrm{Cu}(2)-\mathrm{O}(2 \mathrm{M})$	1.890(7)	1.895(7)		$\mathrm{Cu}(5)-\mathrm{O}(65)$	1.911 (8)	1.902(6)	1.875(7)
$\mathrm{Cu}(3)-\mathrm{N}$ (11)	1.976(9)	1.995(8)	1.976(8)	$\mathrm{Cu}(5)-\mathrm{O}(1 \mathrm{~A})$	2.072(8)	2.031(7)	2.015(6)
$\mathrm{Cu}(3)-\mathrm{N}$ (15)	1.971(9)	1.958(8)	1.960(8)	$\mathrm{Cu}(5)-\mathrm{N}$ (14)	2.016(8)	2,017(8)	2.020(8)

Table 4 Selected bond angles (${ }^{\circ}$) for compounds 1-3

Compound	1	2	3	Compound	1	2	3
$\mathrm{O}(62)-\mathrm{Cu}(1)-\mathrm{O}(61)$	166.7(3)	165.8(3)	168.9(3)	$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{Cl}$	99.6(3)		
$\mathrm{O}(62)-\mathrm{Cu}(1)-\mathrm{N}$ (16)	94.9(3)	95.8(3)	93.0(3)	$\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{Cl}$	100.9(3)		
$\mathrm{O}(61)-\mathrm{Cu}(1)-\mathrm{N}(16)$	94.8(3)	94.1(3)	94.9(3)	$\mathrm{O}(64)-\mathrm{Cu}(4)-\mathrm{Cl}$	129.9(2)		
$\mathrm{O}(62)-\mathrm{Cu}(1)-\mathrm{O}(2 \mathrm{~A})$	86.9(3)	86.8(3)	85.9(2)	O(66)-Cu(4)-CI	114.7(2)		
$\mathrm{O}(61)-\mathrm{Cu}(1)-\mathrm{O}(2 \mathrm{~A})$	92.2(3)	92.5(3)	91.1(2)	$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{~T})$		101.9(4)	
$\mathrm{N}(16)-\mathrm{Cu}(1)-\mathrm{O}(2 \mathrm{~A})$	137.4(3)	138.6(3)	149.5(3)	$\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{~T})$		91.7(3)	
$\mathrm{O}(62)-\mathrm{Cu}(1)-\mathrm{O}(63)$	90.4(3)	89.9(3)	89.4(2)	$\mathrm{O}(66)-\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{~T})$		144.5(4)	
$\mathrm{O}(61)-\mathrm{Cu}(1)-\mathrm{O}(63)$	76.3(3)	75.9(2)	79.9(2)	$\mathrm{O}(1 \mathrm{~T})-\mathrm{Cu}(4)-\mathrm{O}(64)$		96.8(4)	
$\mathrm{N}(16)-\mathrm{Cu}(1)-\mathrm{O}(63)$	129.7(3)	128.3(3)	122.1(2)	$\mathrm{O}(1)-\mathrm{Cu}(4)-\mathrm{O}(2 \mathrm{~B})$			170.4(3)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{Cu}(1)-\mathrm{O}(63)$	92.8(3)	93.0(3)	88.4(2)	$\mathrm{O}(1)-\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{C})$			98.1(3)
$\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(2)-\mathrm{O}(66)$	80.9(3)	79.0(3)		$\mathrm{O}(2 \mathrm{~B})-\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{C})$			88.2(3)
$\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(2)-\mathrm{N}(13)$	98.7(4)	99.0(3)		$\mathrm{O}(1)-\mathrm{Cu}(4)-\mathrm{O}(64)$			76.6(3)
$\mathrm{O}(66)-\mathrm{Cu}(2)-\mathrm{N}(13)$	147.3(4)	145.8(3)	154.5(3)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{Cu}(4)-\mathrm{O}(64)$			95.0(3)
$\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(2)-\mathrm{N}(12)$	156.2(4)	156.6(3)		$\mathrm{O}(1 \mathrm{C})-\mathrm{Cu}(4)-\mathrm{O}(64)$			159.9(3)
$\mathrm{O}(66)-\mathrm{Cu}(2)-\mathrm{N}(12)$	93.5(3)	95.9(3)	95.1(3)	$\mathrm{O}(1)-\mathrm{Cu}(4)-\mathrm{O}(66)$			94.8(3)
$\mathrm{O}(66)-\mathrm{Cu}(2)-\mathrm{O}(1 \mathrm{~B})$			93.6(3)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{Cu}(4)-\mathrm{O}(66)$			91.1(2)
$\mathrm{N}(12)-\mathrm{Cu}(2)-\mathrm{O}(1 \mathrm{~B})$			146.5(3)	O (1C)-Cu(4)-0(66)			100.3(2)
$\mathrm{N}(13)-\mathrm{Cu}(2)-\mathrm{O}(1 \mathrm{~B})$			91.6(3)	$\mathrm{O}(65)-\mathrm{Cu}(5)-\mathrm{O}(63)$	169.5(3)	166.2(3)	172.2(3)
$\mathrm{N}(13)-\mathrm{Cu}(2)-\mathrm{N}(12)$	98.4(4)	97.8(3)	94.1(3)	$\mathrm{O}(65)-\mathrm{Cu}(5)-\mathrm{N}(14)$	94.3(3)	96.1(3)	93.8(3)
$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(3)-\mathrm{O}(64)$	78.6(3)	79.4(3)		$\mathrm{O}(63)-\mathrm{Cu}(5)-\mathrm{N}(14)$	93.6(3)	93.5(3)	92.0(3)
$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(3)-\mathrm{N}(15)$	157.7(4)	157.0(3)		O(65)-Cu(5)-O(1A)	85.3(3)	86.5(3)	84.6(3)
$\mathrm{O}(64)-\mathrm{Cu}(3)-\mathrm{N}$ (15)	96.2(3)	96.5(3)	93.5(3)	O(63)-Cu(5)-0(1A)	93.0(3)	92.3(3)	92.8(3)
$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(3)-\mathrm{N}$ (11)	97.2(4)	98.2(3)		$\mathrm{N}(14)-\mathrm{Cu}(5)-\mathrm{O}(1 \mathrm{~A})$	140.4(3)	140.7(3)	152.4(3)
$\mathrm{O}(64)-\mathrm{Cu}(3)-\mathrm{N}$ (11)	146.7(3)	147.9(3)	150.4(3)	$\mathrm{O}(65)-\mathrm{Cu}(5)-\mathrm{O}(61)$	93.5(3)	90.2(3)	94.1(3)
$\mathrm{N}(15)-\mathrm{Cu}(3)-\mathrm{N}(11)$	98.7(4)	97.0(3)	98.7(3)	$\mathrm{O}(63)-\mathrm{Cu}(5)-\mathrm{O}(61)$	76.1(3)	76.1(2)	78.4(2)
$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{N}$ (15)			156.2(3)	N (14)-Cu(5)-0(61)	130.0(3)	127.2(3)	121.1(2)
$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{N}$ (11)			100.0(3)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{Cu}(5)-\mathrm{O}(61)$	89.4(3)	91.9(3)	86.5(2)
$\mathrm{O}(1)-\mathrm{Cu}(3)-\mathrm{O}(64)$			77.0(3)	$\mathrm{Cu}(4)-\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(3)$	106.9(3)	106.4(3)	
$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{O}(2 \mathrm{M})$	159.2(3)	164.3(3)		$\mathrm{Cu}(3)-\mathrm{O}(1)-\mathrm{Cu}(4)$			107.7(3)
$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{O}(64)$	74.9(3)	74.2(3)		$\mathrm{Cu}(2)-\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(4)$	106.8(4)	104.5(3)	
$\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{O}(64)$	94.2(3)	96.6(3)		$\mathrm{Cu}(1)-\mathrm{O}(61)-\mathrm{Cu}(5)$	99.1(3)	98.0(3)	96.4(2)
$\mathrm{O}(1 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{O}(66)$	93.8(3)	96.8(3)		$\mathrm{Cu}(5)-\mathrm{O}(63)-\mathrm{Cu}(1)$	98.1(3)	97.3(3)	97.7(3)
$\mathrm{O}(2 \mathrm{M})-\mathrm{Cu}(4)-\mathrm{O}(66)$	74.6(3)	75.8(3)		$\mathrm{Cu}(3)-\mathrm{O}(64)-\mathrm{Cu}(4)$	96.0(3)	94.1(3)	98.7(3)
$\mathrm{O}(64)-\mathrm{Cu}(4)-\mathrm{O}(66)$	115.3(3)	117.3(3)	99.5(2)	$\mathrm{Cu}(2)-\mathrm{O}(66)-\mathrm{Cu}(4)$	94.4(3)	97.0(3)	121.8(3)

also useful in identification with a number of clearly observable absorption bands. In addition to the alkyne stretch in the region $2113-2117 \mathrm{~cm}^{-1}$ seen for all the complexes, the intramolecular H -bond in $\mathbf{3}$ results in a $\mathrm{v}(\mathrm{O}-\mathrm{H})$ band at $3250 \mathrm{~cm}^{-1}$ while in 2 a $v\left(\mathrm{O}_{2} \mathrm{~N}-\mathrm{O}\right)$ band occurs at $1289 \mathrm{~cm}^{-1}$.
While there are many structurally characterised pentanuclear Cu^{1} and mixed-valence $\mathrm{Cu}^{11}-\mathrm{Cu}^{1}$ complexes in the literature ${ }^{25}$ there are fewer examples of discrete pentameric $\mathrm{Cu}{ }^{11}$ species. ${ }^{26}$ A part from $\left[\mathrm{Cu}_{5}(\mathrm{bta})_{6}(\mathrm{acac})_{4}\right] \quad(\mathrm{H} \mathrm{acac}=$ pentane-2,4-dione, H bta $=$ benzotriazole ${ }^{266}$ the structural motifs of the remaining $\mathrm{Cu}^{\prime \prime}{ }_{5}$ are based on a square-planar tetrameric unit with the fifth $\mathrm{Cu}^{\prime \prime}$ ion sitting in or above the plane. In $\left[\mathrm{Cu}_{5}(\mathrm{bta})_{6}(\mathrm{acac})_{4}\right]$ a distorted-tetrahedral arrangement of four copper atoms has its fifth copper centre sitting in the centre of the tetrahedron.

Therefore complexes 1-3 have a quite different metal polyhedron to any reported previously for Cu'1.

M agnetic studies of complexes 1-3

The magnetic properties of complexes 1-3 werestudied over the temperature range $1.8-300 \mathrm{~K}$ in an applied field of $1000 \mathrm{G}(0.1$ T) (Fig. 6). All three complexes behave in an essentially identical manner. At room temperature the value for the product $\chi_{m}{ }^{\top}$ (where χ_{m} is the molar magnetic susceptibility) is between 1.6 and $2.0 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$, depending on sample. This value is consistent with, if slightly below, that calculated for five noninteracting copper(II) centres (for $g=2.1$ a calculated value of $\chi_{\mathrm{m}}{ }^{\mathrm{T}}=2.1 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$. As the temperature is lowered the value falls steadily, and for each sample reaches a low temper-

Fig. 6 Plots of χ_{m} and $\chi_{m} \top$ against T for 1. Similar behaviour is observed for $\mathbf{2}$ and 3. χ_{m} is shown as full squares; $\chi_{m} T$ is shown as open diamonds
ature value consistent with an $S=\frac{1}{2}$ ground state. The exchange coupling is therefore predominantly antiferromagnetic, and comparatively weak as the room temperature value for $\chi_{m}{ }^{\top}$ indicates occupation of all possible spin levels. The low symmetry of the structures would require at least three exchange integrals to model the data properly. As such a model would inevitably involve correlation of the values for the various exchange terms we do not feel it is worth pursuing, especially as the spin of the ground state is low.
The $S=\frac{1}{2}$ ground state was confirmed by EPR measurements at $3.6-10 \mathrm{~K}$ and Q-band. These show for each sample a broad resonance near $g=2.15$. For $\mathbf{2}$ this signal could be interpreted as due to an axial system with g values of 2.22 and 2.08. Warming the sample to 80 K rendered this signal broader and isotropic. For 3 EPR studies also indicated presence of an uncoupled monomeric impurity which gave a typical spectrum for an isolated Cu" centre

Conclusion

By introduction of the phenylethynyl group to the sixth position of the pyridonate ring the reactivity towards copper salts has been varied. While octanuclear species are generated on reaction of copper(II) nitrate with xhp ($\mathrm{x}=\mathrm{Br}, \mathrm{Cl}$ or Me) and carboxylates, the corresponding reaction with pehp results in exclusively pentanuclear complexes. This structural variation is probably due to the bulky phenylethynyl substituent in the 6position of the pyridone.
The formation of compound 1 by abstraction of chloride from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was unexpected, and this reaction can be prevented by addition of a source of nitrate anions, to give $\mathbf{2}$. What is interesting is that the pentanuclear core is preserved, suggesting that the metal cage is formed in solution prior to crystallisation, and that substitution reactions might be possible at the terminal co-ordination site on $\mathrm{Cu}(4)$.

Acknowledgements

We thank the EPSRC for funding for a diffractometer, and the Leverhulme Trust for funding a post-doctoral fellowship (A. A. D.). We also thank the Royal Society of Edinburgh for
support (G.A.S.), and Drs. F.E.M abbs and E.J.L.M cl nnes of the EPSRC c.w.ep.r. centre at the U niversity of M anchester for the Q-band spectra of 1-3.

References

1 S. J. Lippard, A ngew. C hem., Int. E d. E ngl., 1988, 27, 344.
2 A. Caneschi, A. Cornia, A. C. Fabretti and D. G atteschi, A ngew. Chem., Int. Ed. Engl., 1995, 34, 2862 and refs. therein.
3 A. K. Powell, S. L. Heath, D. Gatteschi, L. Pardi, R. Sessoli, R. Spina, F. Del Giallo and F. Pieralli, J. Am. Chem. Soc., 1995, 117, 2491.
4 E. Rentschler, D. G atteschi, A . Cornia, A . C. Fabretti, A .-L. Barra, O. I. Shchegolikhina and A. A. Zhdanov, Inorg. Chem., 1996, 35, 4427 and refs. therein.
5 J. M. R awson and R . E. P. W inpenny, C oord. Chem. R ev., 1995, 139, 313.

6 A. J. Blake, C. M. Grant, E. J. L. M clnnes, F. E. M abbs, P. E. Y. M ilne, S. Parsons, J. M. R awson and R. E. P. Winpenny, J. Chem. Soc., D alton Trans., 1996, 4077.
7 A. J. Blake, C. M. Grant, S. Parsons and R. E. P. Winpenny, J. Chem. Soc., D alton Trans., 1995, 1765.

8 A. J. Blake, R. O. Gould, P. E. Y. M ilne and R. E. P. Winpenny, J. C hem. Soc., C hem. Commun., 1991, 1453.

9 A. J. Blake, C. M. Grant, S. Parsons, J. M. Rawson, D. Reed and R. E. P. W inpenny, J. Chem. Soc., D alton T rans., 1995, 163.

10 Y. D ucharme and J. D. Wuest, J. Org. Chem., 1988, 53, 5788.
11 J. Cosier and A. M. G lazier, J. A ppl. C rystallogr., 1986, 19, 105.
12 A. A tomare, M. C. Burla, M. Camelli, G. Cascarano, C. Giacovazzo, A. Guagliardi and G. Polidori, J. Appl. Crystallogr., 1994, 27, 435.
13 G. M. Sheldrick, SHELXS 86, program for crystal structure solution, A cta Crystallogr., Sect. A, 1990, 46, 467.
14 D. J. Watkin, J. R. Curruthers, C. K. Prout and P. W. Betteridge, CRYSTALS, ISSUE 10, Chemical Crystallography Laboratory, U niversity of Oxford, 1996.
15 G. M. Sheldrick, SHELXL 93, program for crystal structure refinement, U niversity of G öttingen, 1993.
16 P. van der Sluis and A. L. Spek, A cta C rystallogr., Sect. A ., 1990, 46, 194.

17 C. J. O'Connor, P rog. Inorg. C hem., 1982, 29, 203.
18 H andbook of Chemistry and Physics, ed. R. C. Weast, CRC Press, Boca R aton, F L, 70th edn., 1990, p. E 134.
19 A. J. Serio Duggan, E. J. J. Grabowski and W. K. Russ, Synthesis, 1980, 573.
20 K. Sonogasira, Y. Tohda and N. H agihara, Tetrahedron Lett., 1975, 4467.

21 J. P. M arsh and L. G oodman, J. O rg. C hem., 1965, 30, 2491.
22 A. K vick, A cta Crystallogr., Sect. B, 1976, 32, 220.
23 A. K vick and I. Olovsson, Ark. Khim., 1968, 30, 71; A. K vick and S. S. Booles, A cta C rystallogr., Sect. B, 1972, 28, 3405.

24 T. Steiner, J. Chem. Soc., Chem. Commun., 1995, 95.
25 See for example, L. P. Wu, M. Yamamoto, T. K uroda-Sowa, M. M aekawa, Y. Suenaga and M. M unakata, J. C hem. Soc., D alton Trans., 1996, 2031; G. M . K apteijn, I. C. M. Wehman-Ooyevaar, D. M. Grove, W. J. J. Smeets, A. L. Spek and G. van K oten, A ngew. Chem., 1993, 32, 72; A. Eichhöfer, D. Fenske and W. H olstein, A ngew. Chem., 1993, 32, 242.
26 (a) B. R. Gibney, D. P. K esissoglou, J. W. K ampf and V. L. Pecoraro, Inorg. Chem., 1994, 33, 4840; (b) J. Handley, D. Collison, C. D. G arner, M. H elliwell, R. D ocherty, J. R . L awson and P. A . Tasker, A ngew. Chem., 1993, 32, 1036; (c) S. M eenakumari and A. R. Chakravarty, J. Chem. Soc., Dalton Trans., 1992, 2305; (d) B. K urzak, E. Farkas, T. G lowiak and H. K ozlowski, J. Chem. Soc., D alton Trans., 1991, 163; (e) E. G ojon, J. G aillard, J.-M . L atour and J. L augier, Inorg. Chem., 1987, 26, 2046.

Received 6th J anuary 1997; Paper 7/00107J

